.. _comparison: Comparison with Other FRED Clients ================================== FedFred offers a **modern, feature-rich alternative** to existing Python clients for the **St. Louis FRED® API**. Below is a detailed comparison. --- Feature Comparison Table ------------------------ +---------------------+-------------------------+---------+-----------+----------------+ | Feature | fedfred | fredapi | pyfredapi | frb/fredbrain | +=====================+=========================+=========+===========+================+ | Async Support | Yes | No | Partial | No | +---------------------+-------------------------+---------+-----------+----------------+ | Caching | Yes (FIFO Cache) | No | No | No | +---------------------+-------------------------+---------+-----------+----------------+ | Rate Limiting | Yes (120 req/min) | No | No | No | +---------------------+-------------------------+---------+-----------+----------------+ | Object Models | Yes (Typed Classes) | No | No | No | +---------------------+-------------------------+---------+-----------+----------------+ | Maps API Support | Yes | No | No | No | +---------------------+-------------------------+---------+-----------+----------------+ | DataFrame Support | Pandas, Polars, Dask | Partial | Partial | No | +---------------------+-------------------------+---------+-----------+----------------+ | License | AGPL | MIT | MIT | Varies | +---------------------+-------------------------+---------+-----------+----------------+ --- Key Differences Explained -------------------------- .. dropdown:: Why Async Support Matters :color: secondary FedFred enables **true concurrency** when downloading large batches of FRED data, dramatically improving speed. Ideal for production pipelines, real-time apps, and bulk research. .. dropdown:: Caching and Rate Limit Handling :color: secondary No need to manually throttle API calls or install external caches. FedFred includes **intelligent caching** and **built-in 120 requests/minute throttling**. .. dropdown:: Structured Objects vs Raw JSON :color: secondary Rather than returning nested dictionaries, FedFred parses responses into **typed Python classes** like :class:`fedfred.objects.Series`, ensuring autocompletion and static type checking. .. dropdown:: GeoFRED and Regional Data Access :color: secondary FedFred uniquely supports regional economic data (state, metro, county) directly into :term:`GeoDataFrame`, perfect for mapping and GIS analysis. .. dropdown:: Backend Flexibility :color: secondary You can output to **Pandas**, **Polars**, **Polars-ST**, or **Dask**, depending on your workflow's performance needs. --- Summary ------- FedFred is the **most complete** and **future-proof** choice if you are building: - Economic Dashboards - High-frequency Research Pipelines - Geographic Data Applications - Financial Forecasting Models It combines modern Python practices (asyncio, typing, DataFrames) with the full breadth of FRED API capabilities. ➔ Check real-world examples in :ref:`use-cases`. ➔ Explore client internals at :ref:`api-overview`. --- Related Topics -------------- .. grid:: :gutter: 2 .. grid-item-card:: Full API Documentation :link: api-index :link-type: ref :link-alt: API Index Explore every method, object, and client class. .. grid-item-card:: Quick Start Tutorial :link: quickstart :link-type: ref :link-alt: Quick Start Guide Learn how to fetch your first FRED dataset. .. grid-item-card:: Regional Datasets :link: data-visualization :link-type: ref :link-alt: Data Visualization Visualize regional economic trends using MapsAPI.